PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Calculation of the first excited 'S® state of the He atom using supersymmetric quantum
mechanics and extension to thaéth excitation
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Usually the renormalized Numerd®RN) algorithm is used to solve the set of coupled differential equations
of the few-body system, mainly for the ground state. The straightforward approach of this algorithm faces
some serious problems of convergence to calculate the excited states. Here we present an alternative method
using the supersymmetric quantum mechanics formalism to a multidimensional bound-state problem. The
problem of convergence is avoided in this approach by searching for the ground state of the partner potential.
Application of this formalism to the first excitetS® state of the He atom gives excellent results; it is much
better than the conventional RN algorithm and the hyperspherical adiabatic approximation. We also indicate
how the method can be generalized to ttik excited state.

PACS numbdps): 02.60—x, 31.15.Ar, 31.25-v, 03.65~w

I. INTRODUCTION helium atom and obtain numerical results. Furthermore, we
discuss how the method can be generalized tonthesxcited
The hyperspherical harmonics expansi¢tHE) method  state.

has been successfully used to obtain the ground states of two This paper is organized as follows. In Sec. Il, we briefly
electron atoms and iori4—8]. This method results in a set of describe the hyperspherical harmonics expansion method.
coupled differential equation€CDE). The numbersN) of The SSQM formalism for a set of CDE is briefly reviewed in
the set of CDE depends on the extent of truncation of the>€c. lll. In Sec. IV, we apply this formalism to the first
hyperspherical expansion basis. Since the Coulomb force is@XCited state of the helium atom. In Sec. V, we indicate how

long-ranged one, the convergence of the hyperspherical efhe method can be generalized to higher excited states with
pansion is slow and\ is usually fairly large(~100 for a the same symmetry. Finally, we draw our conclusions in Sec.

reasonable precision. The set of CDE has to be solved nu\{'

merically, subject to appropriate boundary condition. Usu-

ally the renormalized NumerofRN) algorithm[9] is used to Il HYPERSPHERICAL HARMONICS EXPANSION

solve the set of CDE for the ground state. A straightforward METHOD FOR A THREE-BODY SYSTEM

adoption of this algorithm for the excited states is faced with  \ye |abel the two electrongnassm, charge—e€) as par-

some serious problems in the convergence of the iterativgcles 1 and 2, and the nucle@massM, charge+Ze) as

RN procedure. In this paper, we present an alternativgyarticle 3. Then the Schdinger equation has the forf8]
method using supersymmetric quantum mechafBSQM

for the excited states. For a one-dimensional Sdimger #2 ) ) %2 ) 1 1

equation with a potentiaV/;, in which the energy scale is - ﬁ(vrﬁvrz)_ mvrg_zez(“» T + [Fy—Fa
. . . 1 3 2 3

shifted in such a way that the ground state is at zero energy,

one can define a superpotentidl This W is proportional to

ol o, where ¢y is the ground-state wave function. Using + |Fi—Fo Etor

this superpotential, one can define a partner pote¥tiallt

can be shown that botl/; and V, have identical energy We introduce the Jacobi coordinates

spectra, except that the ground state/efis missing in the

spectrum ofV, [10]. Corresponding eigenfunctions are also gl:al(rz_ ),

related through the operatéi (A), which creategdestroy$

a node of the wave function. Thus the first excited statéof .

can be computed by first calculativgg and then looking for §2=ay

its ground state. Although the procedure is straightforward

and the formalism is known for a couple of decades for a - N ~

one-dimensional problem, a generalization to a multidimen- R=[m(f+f3)+Mrs]/(M+2m),

sional bound-state problem or equivalently to a syster of R

coupled differential equations in one variable has only beemvhere a;=[(M+2m)/2M]*2 a,=1/a;, and R is the

proposed recently by Ud.1], using a matrix superpotential. center-of-mass coordinate. With the transformati@) the

We apply this formalism to the first excitel® state of the  center-of-mass motion is eliminated and the relative motion
is described by

e2

ltb(f)l!f)Z’FS):O- (1)
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whereV is the sum of the three pairwise Coulomb interac- d?
tions, u is an effective mas$§8] given by w=[m?M/(M —gzll1+IVal—E lu(r)),=0,
+2m)]Y2, and& is the relative energy. Introducing hyper-
spherical variables where
46 Ly(Lg+1)
r:(gi_;r_g%)l/Z' ¢:tan ! f_z)' (4) (Vl)Ka,K'a’:% Ka,K'a'

and four other anglesﬁ(él,gogl) and (ﬁgz,qogz) which are,

respectively, the spherical polar angleségfandéz, Eq.(3)
can be written as

r°>—
ar

ﬁZ
S 2ur

2u
+ ?<KQ|V(I',Q)|K,0[,>
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9

(10

andE is the energy in units ot ?/2u; we express bothV,]
1, N R and E in a shifted energy scale, such that the ground-state
~ _( 5 )_ (2 ) +V(r,Q)—E} H(r.0)=0, energy is zero. The energy eigenket is relabelefliés)); ,

ar r whose components arg,(r). Here we adopt the notation
) that a symbol enclosed between square brackets represents

anNx N matrix and a ket vector representssitomponent

where r is the hyperradius and the set of five anglescoymn vector. In the next section we discuss how the SSQM

{&.9¢, 0, V¢, ¢¢,} are collectively called hyperangles and formalism can be adopted for the set of CDE, E9).

are represented by the symlfal The operatofCZ(Q) is the

square of the hyperangular momentumihich is the six- 1. SSQM FORMULATION FOR A SET OF CDE

dimensional analog of the ordinary three-dimensidrfabp-

erato) satisfying an eigenvalue equation shifted energy scalesatisfies

R2(0) Yk ) =A2K (K +4) Vi o Q), ®) o2 o
— gz l11+1IVa [u®™);=0. (12)
where a=(|§1,I§2,L,M) is a short-hand notationL(zlg1
+ I}Z). The eigenfunctio/k () is known as hyperspheri- We define a matrix superpotentjah] through
cal harmonicgHH). Closed analytic expressions ik, ({2) [W]u©@),=—[u@"),, (12)
are known[12]. The wave function/(r,{2) is expanded in
the complete orthonormal basis Wk, (Q)}: where the prime indicates differentiation once with respect to
the argument. Substitution of EQL2) and its derivative into
Uk (1) Eq. (11) suggests the relatioi 1]
0= 5 Veal V). ()
’ [Vi]=[W?]—[W']. (13)
The factorr ~%2 is introd_uqed to remove the fir'st derivative \ye also define two matrix operators
in Eq. (5). Note thatr is invariant under ordinary three-
dimensional rotations as also under permutations of the par- d
ticle indices. Hence required symmetry of the wave function [A]= g [H+IWI,
can be imposed by choosing for the expandigg. (7)] a (14)
suitable subsefor linear combinationsof {)k.({1)} satis- d
fying the symmetry. In our case, for the singlet stat8g, ( [AT]=— d—[l]+[W].
=0), the space wave function must be symmetric under r
P12, which required, to be an even integer. Furthermore, if 114 it is easily seen that
only L=0 states are considerdgfIgl:even integer. Sub- 5
stitution of Eqgs.(6) and (7) in Eq. (5) and use of orthonor- __ d _rat
mality of the HH’s give a set of coupled differential equa- [Hal d_rZ[|]+[Vl] [ATIIA] (15
tions:
and
h? d2 A% Ly(Lk+1)
R S S Allu©y., =0. 1
2pdrl  2p 12 ElUkalr) [A]ju®);=0 (16)
We can now define a partner Hamiltonian
+ X (Ka|V(r,Q)|K a Yug . (r)=0, (8 "
K’ a'
[Hal=[A[AT]= ~ 5 [11+[V,] (17
whereL,=K+ 3. This is in principle an infinite set of CDE.
If the expansiofEq. (7)] is truncated taN terms, Eq.(8) is  with
a set ofN CDE. Equation(8) can be written in a matrix form
as [Va]=[W?]+[W']. (18)

The ground stateu(®), of Eq. (9) (for whichE=0 in the
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TABLE I. Energy of the first excited state of the helium atom calculated by SSQM and comparison with
HAA and HHE results are presented. Ground-state energy calculated by HHE is also in@lidegtrgies
are in atomic units
Ground-state energy First excited state
K inax HHE Experiment SSQM HAA HHE Experiment
4 —2.784371 —2.009 39 —-1.59217 —1.599 27
8 —2.855022 —2.90372 —2.07195 —1.75905 —1.77154 —2.13895
12 —2.876 008 —2.07926 —1.864 53 —1.87854
16 —2.887544 —2.09072 —1.93378 —1.947 69
Applying [H,] on [A]lu(™); (where|u™), is the nth ex- [A)]=u®); (u©), (25)
cited state of H;], corresponding to energi!, i=1,2),
one can see thgtA]|u™), is an eigenket ofH,] corre- ~and
sponding to energ(" . Since Eq(16) shows thatu(®), is
ponding e] 23 q(16) fut™), [B(r)]=[u®"); (u®©"]. 26)

annihilated byfA] andE(") increases as increases, we have

[11]
[A]u™ ") ec[ut™), (19
and
EN,=E? (n=012...). (20)
In a similar manner, we can see
[ATI[u™) o [uM D), . (21)

Thus we see that the energy spectrum[fdg] is identical to
that of[H;], except the absence of the ground statgHdf]

in the spectrum ofH,]. Thus to obtain the first excited state

of [H,], one can construct the superpotential mafhi¥],
with which one can construct the partner Hamiltonjt |
and finally look for the ground state pH,]. In the follow-

We construct the potential matr[¥/,] using Eqs.(23)—
(26) and then solve the corresponding CDE,

2

— grz[11+ V2l = B¢ |[u®),=0, 27

by the same RN algorithm to obtain the ground-state energy
E( and its eigenkefu(®),. By Eq. (20), the energy of the
first excited 'S® state of the helium atom is given H(?,
followed by a reshifting of energy to the original energy
scale. In Table I, we present calculated energy of the first
excited ¢S°) state of the helium atom for variouG,,,, val-
ues[K nhax is the maximunK value retained in the truncated
expansion, Eq(7)]. For eactK =<K,y all allowed values of

a, consistent with the required symmetry, have been re-

tained. In the same table, we also present the excited-state
calculation by the hyperspherical adiabatic approximation

ing section, we demonstrate this procedure for the first extHAA) (in column 5 [8] and by the HHE method using the

cited 1S° state of the helium atom.

IV. APPLICATION TO THE FIRST EXCITED !S® STATE

OF THE HELIUM ATOM

Using the RN algorithn{9], we solve Eq.(11) for the
ground state of the helium atom as in R&]. This gives the

ground state|u(®); as an N-component column vector,
which is normalized to unity. Then one can verify that the

RN algorithm directly td V] [8] (in column 6. From Table

I, it is seen that the convergence trend for the energy is
clearly discernible and the calculated value by SSQM agrees
fairly well with the experimental value and is much better
than either the HAA or the HHE value for ea&h,y-

V. EXTENSION TO HIGHER EXCITED STATES

Our method can easily be generalized to higher excited

following choice of a symmetrized expression for the super-states. For this we start with the partner potertigl] as our

potential
(W)= = Uy (U@ =u®)y ] (22)

satisfies Eq(12). Although the form{Eq. (22)] is not unique,
it is acceptable as a simple approach. In terms of{iMs we
can calculate the partner potential matfiX,] using Eg.
(18), given by

[Vo(r)]=—[B(r) ]+ o(r)[A(r)]=[Vi(r)I[A(r)]
—[A(r)][Va(r)], (23
where

B(r)=—(uO|[Vy(r)][u@"),, (24)

starting potential and repeat the procedure adoptepMor,
i.e., we shift the energy scale again so that the ground state
of [V,] is at zero energy. Since we already know the ground-
state wave functiofu(®), by solving Eq.(27) numerically
(the wave function remains unchanged for a constant shift in
energy, we can now construct the symmetrized superpoten-
tial [W,] corresponding to the potential matii¥/,] as[in
analogy with Eq.(22)]
[Wo]==[u®"), (u @] =[u@), (u®"]. (28
We can then calculate the partner potential[¥%], viz.,
[V3]=[W§]+[W§]. Replacing V5] by [V3] in Eq.(27), we
get the ground stateE(”)) and wave function [(1(?)5) for
the potential V5]. By an extension of the argument leading
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E EQ E® B the excited states faces difficulties in the convergence of the
numerical algorithm. This is because the excited states be-
come gradually more spread out in the global lengihas

EY E® EY the excitation increases. This means that the dominant partial
wave[ Uk ,(r)] corresponds to a largét value as the exci-
o © tation increases. The ground state has the largest contribution
E Eq from the K=0 partial wave. Thus the rate of convergence
ED with respect toK .. decreases rapidly with the excitation.

[#)] (H) (H) (Hd] This difficulty is avoided in the SSQM procedure, by always
searching for the ground states of partner potentials, con-
FIG. 1. Energy-level diagram of the hierarchy of Hamiltonians structed from the ground-state solution of the preceeding
and their energy spectra. Hamiltonian in the hierarchy of partner Hamiltonians. Thus
in the SSQM procedure, the rate of convergenceaissig-
to Eq.(20), we haveEP=E»,=E{",. Thus the energy of nificantly slowed down, even for the excited states. This is in
the second excited state of the original poteriti4] is ob-  sharp contrast with the straightforward HHE procedure. This
tained, by reshifting back to the original energy scale. Thigs clearly seen from Table I. The SSQM result even for
process can be repeated for any excited state. In this way we,,,,.=4 is only 6% below the experimental binding energy,
are constructing a hierarchy of Hamiltoniafsl,],[H,], while the straightforward HHE result for the sankg,ax
[H3], ... corresponding to potential&/,],[V>],[ V3], - . . value is 25% below the experimental value. Remembering
such that each successive member has the same energy spat N (and therefore the numerical effpihcreases rapidly
trum as the previous member, except that the ground state @fith K. [8], the improved convergence is particularly use-
the previous member is missing in the next member of théul for the long-range Coulomb potential, for which the HHE
hierarchy(Fig. 1). Thus the SSQM method can be applied method is known to be slowly converging. Thus the SSQM
recursively to any excited state. procedure outlined here is a convenient practical method for
atomic problems.

VI. CONCLUSIONS

We have demonstrated that the formalism of SSQM for a
set of coupled differential equations can be utilized profit-
ably for the calculation of excited states of such systems. A One of us(B.C.) acknowledges support from the Univer-
straightforward numerical solution of the HHE equation for sity Grants CommissioflUGC), India.
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