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Calculation of the first excited 1Se state of the He atom using supersymmetric quantum
mechanics and extension to thenth excitation

Tapan Kumar Das,* and Barnali Chakrabarti†

Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009, India
~Received 3 January 2000; revised manuscript received 1 June 2000!

Usually the renormalized Numerov~RN! algorithm is used to solve the set of coupled differential equations
of the few-body system, mainly for the ground state. The straightforward approach of this algorithm faces
some serious problems of convergence to calculate the excited states. Here we present an alternative method
using the supersymmetric quantum mechanics formalism to a multidimensional bound-state problem. The
problem of convergence is avoided in this approach by searching for the ground state of the partner potential.
Application of this formalism to the first excited1Se state of the He atom gives excellent results; it is much
better than the conventional RN algorithm and the hyperspherical adiabatic approximation. We also indicate
how the method can be generalized to thenth excited state.

PACS number~s!: 02.60.2x, 31.15.Ar, 31.25.2v, 03.65.2w
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I. INTRODUCTION

The hyperspherical harmonics expansion~HHE! method
has been successfully used to obtain the ground states o
electron atoms and ions@1–8#. This method results in a set o
coupled differential equations~CDE!. The numbers~N! of
the set of CDE depends on the extent of truncation of
hyperspherical expansion basis. Since the Coulomb force
long-ranged one, the convergence of the hyperspherica
pansion is slow andN is usually fairly large~;100! for a
reasonable precision. The set of CDE has to be solved
merically, subject to appropriate boundary condition. U
ally the renormalized Numerov~RN! algorithm@9# is used to
solve the set of CDE for the ground state. A straightforwa
adoption of this algorithm for the excited states is faced w
some serious problems in the convergence of the itera
RN procedure. In this paper, we present an alterna
method using supersymmetric quantum mechanics~SSQM!
for the excited states. For a one-dimensional Schro¨dinger
equation with a potentialV1 , in which the energy scale i
shifted in such a way that the ground state is at zero ene
one can define a superpotentialW. This W is proportional to
c08/c0 , wherec0 is the ground-state wave function. Usin
this superpotential, one can define a partner potentialV2 . It
can be shown that bothV1 and V2 have identical energy
spectra, except that the ground state ofV1 is missing in the
spectrum ofV2 @10#. Corresponding eigenfunctions are al
related through the operatorA† (A), which creates~destroys!
a node of the wave function. Thus the first excited state ofV1
can be computed by first calculatingV2 and then looking for
its ground state. Although the procedure is straightforw
and the formalism is known for a couple of decades fo
one-dimensional problem, a generalization to a multidim
sional bound-state problem or equivalently to a system oN
coupled differential equations in one variable has only b
proposed recently by us@11#, using a matrix superpotentia
We apply this formalism to the first excited1Se state of the
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helium atom and obtain numerical results. Furthermore,
discuss how the method can be generalized to thenth excited
state.

This paper is organized as follows. In Sec. II, we brie
describe the hyperspherical harmonics expansion met
The SSQM formalism for a set of CDE is briefly reviewed
Sec. III. In Sec. IV, we apply this formalism to the firs
excited state of the helium atom. In Sec. V, we indicate h
the method can be generalized to higher excited states
the same symmetry. Finally, we draw our conclusions in S
VI.

II. HYPERSPHERICAL HARMONICS EXPANSION
METHOD FOR A THREE-BODY SYSTEM

We label the two electrons~massm, charge2e) as par-
ticles 1 and 2, and the nucleus~massM, charge1Ze) as
particle 3. Then the Schro¨dinger equation has the form@8#

F2
\2

2m
~¹ r 1

2 1¹ r 2

2 !2
\2

2M
¹ r 3

2 2Ze2S 1

urW12rW3u
1

1

urW22rW3u D
1

e2

urW12rW2u
2EtotGc~rW1 ,rW2 ,rW3!50. ~1!

We introduce the Jacobi coordinates

jW15a1~rW22rW1!,

jW25a2F rW32
rW11rW2

2 G , ~2!

RW 5@m~rW11rW2!1MrW3#/~M12m!,

where a15@(M12m)/2M #1/2, a251/a1 , and RW is the
center-of-mass coordinate. With the transformation~2!, the
center-of-mass motion is eliminated and the relative mot
is described by

F2
\2

2m
~¹j1

2 1¹j2

2 !1V2EGc~jW1 ,jW2!50, ~3!
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whereV is the sum of the three pairwise Coulomb intera
tions, m is an effective mass@8# given by m5@m2M /(M
12m)#1/2, andE is the relative energy. Introducing hype
spherical variables

r 5~j1
21j2

2!1/2, f5tan21S j1

j2
D , ~4!

and four other angles (qj1
,wj1

) and (qj2
,wj2

) which are,

respectively, the spherical polar angles ofjW1 andjW2 , Eq. ~3!
can be written as

F2
\2

2m

1

r 5

]

]r S r 5
]

]r D2
K̂2~V!

r 2 1V~r ,V!2EGc~r ,V!50,

~5!

where r is the hyperradius and the set of five ang
$f,qj1

,wj1
,qj2

,wj2
% are collectively called hyperangles an

are represented by the symbolV. The operatorK̂2(V) is the
square of the hyperangular momentum~which is the six-
dimensional analog of the ordinary three-dimensionalL̂2 op-
erator! satisfying an eigenvalue equation

K̂2~V!YKa~V!5\2K~K14!YKa~V!, ~6!

where a5( l j1
,l j2

,L,M ) is a short-hand notation (LW 5 lWj1

1 lWj2
). The eigenfunctionYKa(V) is known as hyperspheri

cal harmonics~HH!. Closed analytic expressions forYKa(V)
are known@12#. The wave functionc(r ,V) is expanded in
the complete orthonormal basis of$YKa(V)%:

c~r ,V!5(
Ka

uKa~r !

r 5/2 YKa~V!. ~7!

The factorr 25/2 is introduced to remove the first derivativ
in Eq. ~5!. Note that r is invariant under ordinary three
dimensional rotations as also under permutations of the
ticle indices. Hence required symmetry of the wave funct
can be imposed by choosing for the expansion@Eq. ~7!# a
suitable subset~or linear combinations! of $YKa(V)% satis-
fying the symmetry. In our case, for the singlet states (S12
50), the space wave function must be symmetric un
P12, which requiresl j1

to be an even integer. Furthermore,

only L50 states are considered,l j2
5 l j1

5even integer. Sub-
stitution of Eqs.~6! and ~7! in Eq. ~5! and use of orthonor-
mality of the HH’s give a set of coupled differential equ
tions:

F2
\2

2m

d2

dr2 1
\2

2m

LK~LK11!

r 2 2EGuKa~r !

1 (
K8a8

^KauV~r ,V!uK8a8&uK8a8~r !50, ~8!

whereLK5K1 3
2 . This is in principle an infinite set of CDE

If the expansion@Eq. ~7!# is truncated toN terms, Eq.~8! is
a set ofN CDE. Equation~8! can be written in a matrix form
as
-

r-
n

r

S 2
d2

dr2 @ I #1@V1#2ED uu~r !&150, ~9!

where

~V1!Ka,K8a85
LK~LK11!

r 2 dKa,K8a8

1
2m

\2 ^KauV~r ,V!uK8a8& ~10!

andE is the energy in units of\2/2m; we express both@V1#
and E in a shifted energy scale, such that the ground-s
energy is zero. The energy eigenket is relabeled asuu(r )&1 ,
whose components areuKa(r ). Here we adopt the notation
that a symbol enclosed between square brackets repre
anN3N matrix and a ket vector represents anN-component
column vector. In the next section we discuss how the SS
formalism can be adopted for the set of CDE, Eq.~9!.

III. SSQM FORMULATION FOR A SET OF CDE

The ground stateuu(0)&1 of Eq. ~9! ~for which E50 in the
shifted energy scale! satisfies

S 2
d2

dr2 @ I #1@V1# D uu~0!&150. ~11!

We define a matrix superpotential@W# through

@W#uu~0!&152uu~0!8&1 , ~12!

where the prime indicates differentiation once with respec
the argument. Substitution of Eq.~12! and its derivative into
Eq. ~11! suggests the relation@11#

@V1#5@W2#2@W8#. ~13!

We also define two matrix operators

@A#5
d

dr
@ I #1@W#,

~14!

@A†#52
d

dr
@ I #1@W#.

Then it is easily seen that

@H1#52
d2

dr2 @ I #1@V1#5@A†#@A# ~15!

and

@A#uu~0!&150. ~16!

We can now define a partner Hamiltonian

@H2#5@A#@A†#52
d2

dr2 @ I #1@V2# ~17!

with

@V2#5@W2#1@W8#. ~18!
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TABLE I. Energy of the first excited state of the helium atom calculated by SSQM and comparison
HAA and HHE results are presented. Ground-state energy calculated by HHE is also included~all energies
are in atomic units!.

Kmax

Ground-state energy First excited state

HHE Experiment SSQM HAA HHE Experiment

4 22.784 371 22.009 39 21.592 17 21.599 27
8 22.855 022 22.903 72 22.071 95 21.759 05 21.771 54 22.138 95

12 22.876 008 22.079 26 21.864 53 21.878 54
16 22.887 544 22.090 72 21.933 78 21.947 69
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Applying @H2# on @A#uu(n)&1 ~where uu(n)& i is the nth ex-
cited state of@Hi #, corresponding to energyEn

( i ) , i 51,2),
one can see that@A#uu(n)&1 is an eigenket of@H2# corre-
sponding to energyEn

(1) . Since Eq.~16! shows thatuu(0)&1 is
annihilated by@A# andEn

( i ) increases asn increases, we have
@11#

@A#uu~n11!&1}uu~n!&2 ~19!

and

En11
~1! 5En

~2! ~n50,1,2, . . . !. ~20!

In a similar manner, we can see

@A†#uu~n!&2}uu~n11!&1 . ~21!

Thus we see that the energy spectrum for@H2# is identical to
that of @H1#, except the absence of the ground state of@H1#
in the spectrum of@H2#. Thus to obtain the first excited sta
of @H1#, one can construct the superpotential matrix@W#,
with which one can construct the partner Hamiltonian@H2#
and finally look for the ground state of@H2#. In the follow-
ing section, we demonstrate this procedure for the first
cited 1Se state of the helium atom.

IV. APPLICATION TO THE FIRST EXCITED 1Se STATE
OF THE HELIUM ATOM

Using the RN algorithm@9#, we solve Eq.~11! for the
ground state of the helium atom as in Ref.@8#. This gives the
ground stateuu(0)&1 as an N-component column vector
which is normalized to unity. Then one can verify that t
following choice of a symmetrized expression for the sup
potential

@W#52uu~0!8&1 1^u
~0!u2uu~0!&1 1^u

~0!8u ~22!

satisfies Eq.~12!. Although the form@Eq. ~22!# is not unique,
it is acceptable as a simple approach. In terms of this@W#, we
can calculate the partner potential matrix@V2# using Eq.
~18!, given by

@V2~r !#52@B~r !#1f~r !@A~r !#2@V1~r !#@A~r !#

2@A~r !#@V1~r !#, ~23!

where

f~r !521^u
~0!u@V1~r !#uu~0!8&1 , ~24!
x-

-

@A~r !#5uu~0!&1 1^u
~0!u, ~25!

and

@B~r !#5uu~0!8&1 1^u
~0!8u. ~26!

We construct the potential matrix@V2# using Eqs.~23!–
~26! and then solve the corresponding CDE,

S 2
d2

dr2 @ I #1@V2#2E0
~2!D uu~0!&250, ~27!

by the same RN algorithm to obtain the ground-state ene
E0

(2) and its eigenketuu(0)&2 . By Eq. ~20!, the energy of the
first excited 1Se state of the helium atom is given byE0

(2) ,
followed by a reshifting of energy to the original energ
scale. In Table I, we present calculated energy of the fi
excited (1Se) state of the helium atom for variousKmax val-
ues@Kmax is the maximumK value retained in the truncate
expansion, Eq.~7!#. For eachK<Kmax, all allowed values of
a, consistent with the required symmetry, have been
tained. In the same table, we also present the excited-s
calculation by the hyperspherical adiabatic approximat
~HAA ! ~in column 5! @8# and by the HHE method using th
RN algorithm directly to@V1# @8# ~in column 6!. From Table
I, it is seen that the convergence trend for the energy
clearly discernible and the calculated value by SSQM agr
fairly well with the experimental value and is much bett
than either the HAA or the HHE value for eachKmax.

V. EXTENSION TO HIGHER EXCITED STATES

Our method can easily be generalized to higher exc
states. For this we start with the partner potential@V2# as our
starting potential and repeat the procedure adopted for@V1#,
i.e., we shift the energy scale again so that the ground s
of @V2# is at zero energy. Since we already know the grou
state wave functionuu(0)&2 by solving Eq.~27! numerically
~the wave function remains unchanged for a constant shi
energy!, we can now construct the symmetrized superpot
tial @W2# corresponding to the potential matrix@V2# as @in
analogy with Eq.~22!#

@W2#52uu~0!8&2 2^u
~0!u2uu~0!&2 2^u

~0!8u. ~28!

We can then calculate the partner potential of@V2#, viz.,
@V3#5@W2

2#1@W28#. Replacing@V2# by @V3# in Eq. ~27!, we
get the ground state (E0

(3)) and wave function (uu(0)&3) for
the potential@V3#. By an extension of the argument leadin
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to Eq.~20!, we haveEn
(3)5En11

(2) 5En12
(1) . Thus the energy of

the second excited state of the original potential@V1# is ob-
tained, by reshifting back to the original energy scale. T
process can be repeated for any excited state. In this wa
are constructing a hierarchy of Hamiltonians@H1#,@H2#,
@H3#, . . . corresponding to potentials@V1#,@V2#,@V3#, . . .
such that each successive member has the same energy
trum as the previous member, except that the ground sta
the previous member is missing in the next member of
hierarchy~Fig. 1!. Thus the SSQM method can be appli
recursively to any excited state.

VI. CONCLUSIONS

We have demonstrated that the formalism of SSQM fo
set of coupled differential equations can be utilized pro
ably for the calculation of excited states of such systems
straightforward numerical solution of the HHE equation f

FIG. 1. Energy-level diagram of the hierarchy of Hamiltonia
and their energy spectra.
s
we

pec-
of
e

a
-
A

the excited states faces difficulties in the convergence of
numerical algorithm. This is because the excited states
come gradually more spread out in the global length~r! as
the excitation increases. This means that the dominant pa
wave @uKa(r )# corresponds to a largerK value as the exci-
tation increases. The ground state has the largest contribu
from the K50 partial wave. Thus the rate of convergen
with respect toKmax decreases rapidly with the excitation
This difficulty is avoided in the SSQM procedure, by alwa
searching for the ground states of partner potentials, c
structed from the ground-state solution of the preceed
Hamiltonian in the hierarchy of partner Hamiltonians. Th
in the SSQM procedure, the rate of convergence isnot sig-
nificantly slowed down, even for the excited states. This is
sharp contrast with the straightforward HHE procedure. T
is clearly seen from Table I. The SSQM result even
Kmax54 is only 6% below the experimental binding energ
while the straightforward HHE result for the sameKmax
value is 25% below the experimental value. Remember
that N ~and therefore the numerical effort! increases rapidly
with Kmax @8#, the improved convergence is particularly us
ful for the long-range Coulomb potential, for which the HH
method is known to be slowly converging. Thus the SSQ
procedure outlined here is a convenient practical method
atomic problems.
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